0%

CPython中的全局解释锁(GIL)

全局解释锁(GIL)是Python解释器中实现的一个全局锁,控制Python程序的执行。

首先看一下全局解释锁的定义:

static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */

上面这一行代码摘自 ceval.c —— CPython 2.7 解释器的源代码,Guido van Rossum 的注释”This is the GIL“ 添加于2003 年,但这个锁本身可以追溯到1997年他的第一个多线程 Python 解释器。在 Unix系统中,PyThread_type_lock 是标准 C mutex_t 锁的别名。当 Python 解释器启动时它初始化:

1
2
3
4
5
6
void
PyEval_InitThreads(void)
{
interpreter_lock = PyThread_allocate_lock();
PyThread_acquire_lock(interpreter_lock);
}

解释器中的所有 C 代码在执行 Python 时必须保持这个锁

  • Guido 最初加这个锁是因为它使用起来简单。而且每次从 CPython 中去除 GIL 的尝试会耗费单线程程序太多性能,尽管去除 GIL 会带来多线程程序性能的提升,但仍是不值得的。(前者是Guido最为关切的, 也是不去除 GIL 最重要的原因, 一个简单的尝试是在1999年, 最终的结果是导致单线程的程序速度下降了几乎2倍.)

  • GIL 对程序中线程的影响足够简单,记住这个原则:“一个线程运行 Python ,而其他 N 个睡眠或者等待 I/O.”(即保证同一时刻只有一个线程对共享资源进行存取) Python 线程也可以等待threading.Lock或者线程模块中的其他同步对象;线程处于这种状态也称之为”睡眠“。

线程何时切换?一个线程无论何时开始睡眠或等待网络 I/O,其他线程总有机会获取 GIL 执行 Python 代码。这是协同式多任务处理。CPython 也还有抢占式多任务处理。如果一个线程不间断地在 Python 2 中运行 1000 字节码指令,或者不间断地在 Python 3 运行15 毫秒,那么它便会放弃 GIL,而其他线程可以运行。把这想象成旧日有多个线程但只有一个 CPU 时的时间片。我将具体讨论这两种多任务处理。

协同式多任务处理

当一项任务比如网络 I/O启动,而在长的或不确定的时间,没有运行任何 Python 代码的需要,一个线程便会让出GIL,从而其他线程可以获取 GIL 而运行 Python。这种礼貌行为称为协同式多任务处理,它允许并发;多个线程同时等待不同事件。

两个线程各自分别连接一个套接字:

1
2
3
4
5
6
7
def do_connect():
s = socket.socket()
s.connect(('Python.org', 80)) # drop the GIL

for i in range(2):
t = threading.Thread(target=do_connect)
t.start()

两个线程在同一时刻只能有一个执行 Python ,但一旦线程开始连接,它就会放弃 GIL ,这样其他线程就可以运行。这意味着两个线程可以并发等待套接字连接,这是一件好事。在同样的时间内它们可以做更多的工作。

这也就是常见的 I/O 密集型多线程

让我们看看一个线程在连接建立时实际是如何放弃 GIL 的,在 socketmodule.c 中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/* s.connect((host, port)) method */
static PyObject *
sock_connect(PySocketSockObject *s, PyObject *addro)
{
sock_addr_t addrbuf;
int addrlen;
int res;

/* convert (host, port) tuple to C address */
getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen);

Py_BEGIN_ALLOW_THREADS
res = connect(s->sock_fd, addr, addrlen);
Py_END_ALLOW_THREADS

/* error handling and so on .... */
}

线程正是在 Py_BEGIN_ALLOW_THREADS 宏处放弃 GIL;它被简单定义为:

PyThread_release_lock(interpreter_lock);

当然 Py_END_ALLOW_THREADS 重新获取锁。一个线程可能会在这个位置堵塞,等待另一个线程释放锁;一旦这种情况发生,等待的线程会抢夺回锁,并恢复执行你的Python代码。简而言之:当N个线程在网络 I/O 堵塞,或等待重新获取GIL,而一个线程运行Python。

下面来看一个使用协同式多任务处理快速抓取许多 URL 的完整例子。但在此之前,先对比下协同式多任务处理和其他形式的多任务处理。

抢占式多任务处理

Python线程可以主动释放 GIL,也可以先发制人抓取 GIL 。

让我们回顾下 Python 是如何运行的。你的程序分两个阶段运行。首先,Python文本被编译成一个名为字节码的简单二进制格式。第二,Python解释器的主回路,一个名叫 pyeval_evalframeex() 的函数,流畅地读取字节码,逐个执行其中的指令。

当解释器通过字节码时,它会定期放弃GIL,而不需要经过正在执行代码的线程允许,这样其他线程便能运行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
for (;;) {
if (--ticker < 0) {
ticker = check_interval;

/* Give another thread a chance */
PyThread_release_lock(interpreter_lock);

/* Other threads may run now */

PyThread_acquire_lock(interpreter_lock, 1);
}

bytecode = *next_instr++;
switch (bytecode) {
/* execute the next instruction ... */
}
}

默认情况下,检测间隔是1000 字节码。所有线程都运行相同的代码,并以相同的方式定期从他们的锁中抽出。在 Python 3 GIL 的实施更加复杂,检测间隔不是一个固定数目的字节码,而是15 毫秒。然而,对于你的代码,这些差异并不显著。

Python中的线程安全

如果一个线程可以随时失去 GIL,你必须使让代码线程安全。 然而 Python 程序员对线程安全的看法大不同于 C 或者 Java 程序员,因为许多 Python 操作是原子的

在列表中调用 sort(),就是原子操作的例子。线程不能在排序期间被打断,其他线程从来看不到列表排序的部分,也不会在列表排序之前看到过期的数据。原子操作简化了我们的生活,但也有意外。例如,+= 似乎比 sort() 函数简单,但 += 不是原子操作。你怎么知道哪些操作是原子的,哪些不是?

看看这个代码:

1
2
3
4
n = 0
def foo():
global n
n += 1

我们可以看到这个函数用 Python 的标准 dis 模块编译的字节码:

1
2
3
4
5
6
>>> import dis
>>> dis.dis(foo)
LOAD_GLOBAL 0 (n)
LOAD_CONST 1 (1)
INPLACE_ADD
STORE_GLOBAL 0 (n)

代码的一行中, n += 1,被编译成 4 个字节码,进行 4 个基本操作:

将 n 值加载到堆栈上
将常数 1 加载到堆栈上
将堆栈顶部的两个值相加
将总和存储回 n

记住,一个线程每运行 1000 字节码,就会被解释器打断夺走 GIL 。如果运气不好,这(打断)可能发生在线程加载 n 值到堆栈期间,以及把它存储回 n 期间。很容易可以看到这个过程会如何导致更新丢失:

1
2
3
4
5
6
7
8
9
threads = []
for i in range(100):
t = threading.Thread(target=foo)
threads.append(t)
for t in threads:
t.start()
for t in threads:
t.join()
print(n)

通常这个代码输出 100,因为 100 个线程每个都递增 n 。但有时你会看到 99 或 98 ,如果一个线程的更新被另一个覆盖。

所以,尽管有 GIL,你仍然需要加锁来保护共享的可变状态:

1
2
3
4
5
6
n = 0
lock = threading.Lock()
def foo():
global n
with lock:
n += 1

如果我们使用一个原子操作比如 sort() 函数会如何呢?:

1
2
3
lst = [4, 1, 3, 2]
def foo():
lst.sort()

这个函数的字节码显示 sort() 函数不能被中断,因为它是原子的:

1
2
3
4
>>> dis.dis(foo)
LOAD_GLOBAL 0 (lst)
LOAD_ATTR 1 (sort)
CALL_FUNCTION 0

一行被编译成 3 个字节码:

将 lst 值加载到堆栈上
将其排序方法加载到堆栈上
调用排序方法

即使这一行 lst.sort() 分几个步骤,调用 sort 自身是单个字节码,因此线程没有机会在调用期间抓取 GIL 。我们可以总结为在 sort() 不需要加锁。或者,为了避免担心哪个操作是原子的,遵循一个简单的原则:始终围绕共享可变状态的读取和写入加锁。毕竟,在 Python 中获取一个 threading.Lock 是廉价的。

尽管 GIL 不能免除我们加锁的需要,但它确实意味着没有加细粒度的锁的需要(所谓细粒度是指程序员需要自行加、解锁来保证线程安全,典型代表是 Java , 而 CPython 中是粗粒度的锁,即语言层面本身维护着一个全局的锁机制,用来保证线程安全)。在线程自由的语言比如 Java,程序员努力在尽可能短的时间内加锁存取共享数据,减轻线程争夺,实现最大并行。然而因为在 Python 中线程无法并行运行,细粒度锁没有任何优势。只要没有线程保持这个锁,比如在睡眠,等待I/O, 或者一些其他失去 GIL 操作,你应该使用尽可能粗粒度的,简单的锁。其他线程无论如何无法并行运行。

并发可以完成更快

我敢打赌你真正为的是通过多线程来优化你的程序。通过同时等待许多网络操作,你的任务将更快完成,那么多线程会起到帮助,即使在同一时间只有一个线程可以执行 Python 。这就是并发,线程在这种情况下工作良好。

线程中代码运行更快

1
2
3
4
5
6
7
8
9
10
11
12
13
import threading
import requests
urls = [...]
def worker():
while True:
try:
url = urls.pop()
except IndexError:
break # Done.
requests.get(url)
for _ in range(10):
t = threading.Thread(target=worker)
t.start()

正如我们所看到的,在 HTTP上面获取一个URL中,这些线程在等待每个套接字操作时放弃 GIL,所以他们比一个线程更快完成工作。

Parallelism 并行

如果想只通过同时运行 Python 代码,而使任务完成更快怎么办?这种方式称为并行,这种情况 GIL 是禁止的。你必须使用多个进程,这种情况比线程更复杂,需要更多的内存,但它可以更好利用多个 CPU。

这个例子 fork 出 10 个进程,比只有 1 个进程要完成更快,因为进程在多核中并行运行。但是 10 个线程与 1 个线程相比,并不会完成更快,因为在一个时间点只有 1 个线程可以执行 Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
import sys
nums =[1 for _ in range(1000000)]
chunk_size = len(nums) // 10
readers = []
while nums:
chunk, nums = nums[:chunk_size], nums[chunk_size:]
reader, writer = os.pipe()
if os.fork():
readers.append(reader) # Parent.
else:
subtotal = 0
for i in chunk: # Intentionally slow code.
subtotal += i
print('subtotal %d' % subtotal)
os.write(writer, str(subtotal).encode())
sys.exit(0)
# Parent.
total = 0
for reader in readers:
subtotal = int(os.read(reader, 1000).decode())
total += subtotal
print("Total: %d" % total)

因为每个 fork 的进程有一个单独的 GIL,这个程序可以把工作分派出去,并一次运行多个计算。

(Jython 和 IronPython 提供单进程的并行,但它们远没有充分实现 CPython 的兼容性。有软件事务内存的 PyPy 有朝一日可以运行更快。如果你对此好奇,试试这些解释器。)